Search results for "Linear accelerator"

showing 10 items of 20 documents

High-gradient testing of an $S$-band, normal-conducting low phase velocity accelerating structure

2020

A novel high-gradient accelerating structure with low phase velocity, $v/c=0.38$, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC $100\text{ }\text{ }\mathrm{MV}/\mathrm{m}$ high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward…

Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Field (physics)[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]cavityType (model theory)01 natural sciencesp: accelerationLinear particle accelerator0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsReview ArticlesPhysics010308 nuclear & particles physicsvelocity: lowPulse durationSurfaces and Interfaceslinear acceleratorgradient: highAccelerators and Storage Ringsvelocity: phasePulse (physics)particle: nonrelativisticDistribution (mathematics)lcsh:QC770-798Atomic physicsPhase velocityEnergy (signal processing)performance
researchProduct

High brilliance uranium beams for the GSI FAIR

2017

The 40 years old GSI-UNILAC (Universal Linear Accelerator) as well as the heavy ion synchrotron SIS18 will serve as a high current heavy ion injector for the new FAIR (Facility for Antiproton and Ion Research) synchrotron SIS100. In the context of an advanced machine investigation program in combination with the ongoing UNILAC upgrade program, a new uranium beam intensity record (11.5 emA, ${\mathrm{U}}^{29+}$) at very high beam brilliance was achieved recently in a machine experiment campaign. This is an important step paving the way to fulfill the FAIR heavy ion high intensity beam requirements. Results of high current uranium beam measurements applying a newly developed pulsed hydrogen g…

PhysicsNuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicschemistry.chemical_elementContext (language use)Surfaces and InterfacesUranium01 natural sciencesSynchrotronlaw.inventionNuclear physicsUpgradechemistrylawUniversal linear accelerator0103 physical sciencesPhysics::Accelerator PhysicsFacility for Antiproton and Ion Researchlcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment010306 general physicsIntensity (heat transfer)Beam (structure)Physical Review Accelerators and Beams
researchProduct

Space charge and microbunching studies for the injection arc of MESA

2018

For intense electron bunches traversing through bends, as for example the recirculation arcs of an ERL, space charge (SC) may result in beam phase space deterioration. SC modifies the electron transverse dynamics in dispersive regions along the beam line and causes emittance growth for mismatched beams or for specific phase advances. On the other hand, longitudinal space charge together with dispersion can lead to the microbunching instability. The present study focuses on the 180° low energy (5 MeV) injection arc lattice for the multi-turn Mainz Energy-recovering Superconducting Accelerator (MESA), which should deliver a CW beam at 10⁵ MeV for physics experiments with an internal target. W…

PhysicsHistory05 Beam Dynamics and EM Fieldsbusiness.industryElectronInstabilitySpace chargeAccelerator PhysicsComputer Science ApplicationsEducationD08 High Intensity in Linear Accelerators - Space Charge HalosArc (geometry)Transverse planeOpticsBeamlinePhysics::Accelerator PhysicsThermal emittancebusinessBeam (structure)Journal of Physics: Conference Series
researchProduct

High-Gradient RF laboratory at IFIC for medical applications

2018

General interest has been shown over the last years for compact and more affordable facilities for hadron-therapy. The High-Gradient (HG) know-how and technology for normal-conducting accelerating RF (Radio-Frequency) electron linac (linear accelerator) structures recently developed for projects such as CLIC (CERN), has raised the achievable accelerating gradient from 20-30 MV/m up to 100-120 MV/m. This gain has come through a better understanding of the high-power RF vacuum arcs or breakdowns (BD) phenomena, the development of quantitative HG RF design methods and refinements in fabrication techniques. This can allow for more compact linacs also for protons, which is potentially important …

radio-frequency:CIENCIAS TECNOLÓGICAS [UNESCO]hadrontherapyUNESCO::CIENCIAS TECNOLÓGICASlinear acceleratorhigh-gradient
researchProduct

A superconducting CW-LINAC for heavy ion acceleration at GSI

2017

The European physical journal / Web of Conferences 138, 01026 (2017). doi:10.1051/epjconf/201713801026

Physics010308 nuclear & particles physicsbusiness.industryNuclear engineeringPhysicsQC1-999Electrical engineeringCoulomb barrierInjector01 natural sciences530Linear particle acceleratorlaw.inventionAccelerationDuty cyclelawUniversal linear accelerator0103 physical sciencesContinuous waveddc:530010306 general physicsbusinessBeam (structure)
researchProduct

A source of polarized electrons based on photoemission of GaAsP.

1990

Abstract The source described is based on photoemission of electrons from 100-GaAs0.62P0.38 activated to negative electron affinity. It is built to inject a beam of polarized electrons into the 350 MeV linear accelerator in Mainz. It is capable of delivering a mean current of 28 μA spin-polarized longitudinally to a degree of 0.44. The lifetime of the cathode under operational conditions is better than 200 h. The source was successfully run in a parity experiment, in which the analysing power of quasielastic scattering from beryllium for longitudinally polarized electrons was measured.

PhysicsNuclear and High Energy PhysicsQuasielastic scatteringMeV linear acceleratorInverse photoemission spectroscopychemistry.chemical_elementAngle-resolved photoemission spectroscopyParity (physics)ElectronCathodelaw.inventionchemistrylawBerylliumAtomic physicsInstrumentation
researchProduct

Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

2011

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsLow emittancePhysics and Astronomy (miscellaneous)Nuclear engineering[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]FOS: Physical sciencesbeam transport01 natural sciencesBeam characteristicslaw.inventionNuclear physicslaw0103 physical sciencesddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityBeam handling010306 general physicsAccelerator Test FacilityPhysicsFocus (computing)Research Groups and Centres\Physics\Low Temperature Physics010308 nuclear & particles physicsFaculty of Science\PhysicsBeam commissioningFísicaParticle acceleratorSurfaces and Interfaces29.27.Eg 29.27.Fh 29.20.dbAccelerators and Storage RingsStorage rings and collidersCOLLIDERSTechnology for normal conducting higher energy linear accelerators [9]BeamlineTest beamlcsh:QC770-798Physics - Accelerator PhysicsBeam (structure)
researchProduct

Quantum-state-selective decay spectroscopy of Ra213

2017

An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a $^{48}\mathrm{Ca}$ beam impinging on a thin $^{170}\mathrm{Er}$ target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the $5n$ evaporation channel $^{213}\mathrm{Ra}$ was mass-selected in SHIPTRAP, and the $^{213}\mathrm{Ra}$ ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 s…

PhysicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsNuclear shell modelPenning trap01 natural sciencesNuclear physicsUniversal linear accelerator0103 physical sciencesGamma spectroscopyAlpha decayAtomic physicsNuclear Experiment010306 general physicsSpectroscopyGround stateRadioactive decayPhysical Review C
researchProduct

Precision luminosity measurements at LHCb

2014

Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy $\sqrt{s}$. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for $\sqrt{s}$ = 2.76, 7 and 8 TeV (proton-proton collisions) and for $\sqrt{s_{NN}}$ = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves sig…

Instrumentation for particle accelerators and storage rings - high energy (linear acceleratorsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cluster finding[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment06.20.fbInstrumentationMathematical PhysicsQCPhysicsLuminosity (scattering theory)Large Hadron ColliderPattern recognition cluster finding calibration and fitting methodssynchrotrons)DetectorPattern recognition cluster finding calibration and fitting methodsComputer interfacecalibration and fitting methodsFísica nuclearTracking and position-sensitive detectorLHCParticle Physics - ExperimentParticle physics29.40.GxPattern recognition cluster finding calibration and fitting methods; Instrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsLHCb - Abteilung HofmannPattern recognition cluster finding calibration and fitting methodInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)NOConsistency (statistics)Pattern recognitionCalibrationSDG 7 - Affordable and Clean EnergyInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyInteraction pointStandards and calibrationFunction (mathematics)29.50.+vLHCbInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons); Pattern recognition cluster finding calibration and fitting methods; Instrumentation; Mathematical PhysicsTEVPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentInstrumentation for particle accelerators and storage rings - high energy (linear accelerators synchrotrons); Pattern recognition cluster finding calibration and fitting methodsEnergy (signal processing)
researchProduct

Status and recent developments at the polarized-electron injector of the superconducting Darmstadt electron linear accelerator S-DALINAC

2011

At the superconducting Darmstadt electron linac a 100 keV source of polarized electrons has been installed. Major components had been tested prior to installation at an offline teststand. Commissioning of the new source at the S-DALINAC will take place early in 2011. We report on the performance of the teststand, simulations, developments on the laser systems, new radio-frequency components for the S-DALINAC injector, and the status of the implementation of the source.

SuperconductivityPhysicsHistoryInjectorElectronLaserElectromagnetic radiationLinear particle acceleratorComputer Science ApplicationsEducationlaw.inventionNuclear physicsElectron linear acceleratorlawLeptonJournal of Physics: Conference Series
researchProduct